Exercice : Compacité et propriété de Borel-Lebesgue

Jean-Baptiste Campesato $27\ {\rm novembre}\ 2008$

Vidéo illustrant le théorème de Borel-Lebesgue (Heine-Borel pour les anglophones): http://fr.youtube.com/ watch?v=zE5U84g5Yl0

 $\mathfrak{P}(K)$ désigne l'ensemble des parties

Exercice 1: Propriété de Borel-Lebesgue

Soient E un \mathbb{K} -evn et K une partie compacte de E.

1. Soient $n \in \mathbb{N}^*$ et $\Omega_n = \{B_o\left(x, \frac{1}{n}\right), x \in K\}$. Montrer qu'un nombre fini de boules ouvertes de Ω_n suffit à recouvrir K. i.e. montrer qu'il existe $m \in \mathbb{N}^*$ et $(x_0, \dots, x_m) \in K^{m+1}$ tels que

$$K \subset \bigcup_{i=0}^{m} B_o\left(x_i, \frac{1}{n}\right).$$

2. Montrer qu'il existe $A \in \mathfrak{P}(K)$ tel que A soit dénombrable et dense dans K.

Proposition de réponse :

1. Supposons par l'absurde la propriété fausse.

Comme un nombre fini de boules ouvertes à centres dans K et de rayon $\frac{1}{n}$ ne suffit pas à recouvrir K, on peut construire une suite $(x_k)_{k\in\mathbb{N}}\in K^{\mathbb{N}}$ ainsi :

$$\begin{cases} x_0 \in K \\ x_k \in K \setminus \bigcup_{i=0}^{k-1} B_o\left(x_i, \frac{1}{n}\right) & (x_k \text{ existe toujours d'après l'hypothèse}) \end{cases}$$

Comme $(x_k)_{k\in\mathbb{N}}$ est une suite à éléments dans K compacte,

il existe $\sigma: \mathbb{N} \longmapsto \mathbb{N}$ strictement croissante et $x \in K$ tel que $x_{\sigma(k)} \underset{k \to +\infty}{\longrightarrow} x$.

Comme $(x_{\sigma(k)})_k$ converge, elle est de Cauchy. Il existe donc $k_0 \in \mathbb{N}$ tel que $\forall (p,q) \in \mathbb{N}^2, p,q \ge k_0 \Rightarrow \mathrm{d}(x_{\sigma(p)},x_{\sigma(q)}) \le \frac{1}{n+1}.$

Donc si $k \ge k_0$, $d(x_{\sigma(k)}, x_{\sigma(k+1)}) \le \frac{1}{n+1}$ (1).

Donc si $k \geq \kappa_0$, $\operatorname{u}(x_{\sigma(k)}, x_{\sigma(k+1)}) - n+1$ Or $x_{\sigma(k+1)} \in K \setminus \bigcup_{i=0}^{\sigma(k+1)-1} B_o\left(x_i, \frac{1}{n}\right)$ et d'après la définition de $(x_k)_k$ et la croissance de σ , $x_{\sigma(k)} \in \bigcup_{i=0}^{\sigma(k+1)-1} B_o\left(x_i, \frac{1}{n}\right)$.

croissance de
$$\sigma$$
, $x_{\sigma(k)} \in \bigcup_{i=0}^{\sigma(k+1)-1} B_o\left(x_i, \frac{1}{n}\right)$

Donc $d(x_{\sigma(k)}, x_{\sigma(k+1)}) \ge \frac{1}{n}$ ce qui est en contradiction avec (1). On en conclut que la propriété est vraie, i.e. un nombre fini de boules ouvertes de Ω_n suffit à recouvrir K.

2. D'après la question précèdente, pour tout $n \in \mathbb{N}^*$ il existe $i_n \in \mathbb{N}$ et $A_n = \{x_{n,0}, \dots, x_{n,i_n}\}$ tel que les boules à centres dans A_n et de rayon $\frac{1}{n}$ recouvrent K.

Notons
$$A = \bigcup_{n=1}^{+\infty} A_n = \{x_{1,0}, \dots, x_{1,i_0}, x_{2,0}, \dots, x_{2,i_2}, \dots\}.$$

A est une réunion dénombrable d'ensembles finis. A est donc dénombrable.

Montrons que A est dense dans K (i.e. que $\overline{A} = K$): Soit $x \in K$.

Nous pouvons construire une suite $(x_n)_n \in A^{\mathbb{N}^*}$ en utilisant la première question: $\forall n \in \mathbb{N}^*, \exists x_n \in A_n \subset A \text{ tq } x \in B_o\left(x_n, \frac{1}{n}\right).$

Par passage à la limite nous avons $x_n \xrightarrow[n \to +\infty]{} x$

Nous venons donc de montrer que $\forall x \in K, \exists (x_n)_n \in A^{\mathbb{N}^*} \text{ tq } x_n \xrightarrow[n \to +\infty]{} x \text{ et}$ donc que $\overline{A} = K$.

Ainsi nous venons d'exhiber une partie A de K dénombrable et dense dans ce dernier.